Part Number Hot Search : 
L8UG9S53 B1500A 61600 1LS501 00200 PEM1303 MT46V32M DM74LS
Product Description
Full Text Search
 

To Download IRFB812 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFB812pbf 6/23/11 www.irf.com 1 hexfet   power mosfet to-220ab features and benefits ? 
               ?                 ? !             
 applications ?      "# ? $    #   ? "%    pd -97693 v dss r ds(on) typ. trr typ. i d 500v 1.75 75ns 3.6a s d g notes   through  are on page 2 absolute maximum ratings parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 3.6 i d @ t c = 100c continuous drain current, v gs @ 10v 2.3 a i dm pulsed drain current 14.4 p d @t c = 25c power dissipation 78 w linear derating factor 0.63 w/c v gs gate-to-source voltage 20 v dv/dt peak diode recovery dv/dt  32 v/ns t j operating junction and -55 to + 150 t stg storage temperature range c soldering temperature, for 10 seconds 300 (1.6mm from case ) mounting torque, 6-32 or m3 screw diode characteristics symbol parameter min. typ. max. units conditions i s continuous source current CCC CCC 3.6 mosfet symbol (body diode) a showing the i sm pulsed source current CCC CCC 14.4 integral reverse (body diode)  p-n junction diode. v sd diode forward voltage CCC CCC 1.2 v t j = 25c, i s = 3.6a, v gs = 0v  t rr reverse recovery time CCC 75 110 ns t j = 25c, i f = 3.6a CCC 94 140 t j = 125c, di/dt = 100a/ s  q rr reverse recovery charge CCC 135 200 nc t j = 25c, i s = 3.6a, v gs = 0v  CCC 220 330 t j = 125c, di/dt = 100a/ s  i rrm reverse recovery current CCC 3.2 4.8 a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld ) 10lb  in (1.1n  m) downloaded from: http:///

 2 www.irf.com   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11)   starting t j = 25c, l = 93mh, r g = 25 , i as = 1.8a. (see figure 13).  i sd = 3.6a, di/dt 520a/ s, v dd v (br)dss , t j 150c.   pulse width 300 s; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . c oss eff.(er) is a fixed capacitance that stores the same energy as c oss while v ds is rising from 0 to 80% v dss .    
    
  static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 500 CCC CCC v ? v (br)dss / ? t j breakdown voltage temp. coefficient CCC 0.37 CCC v/c r ds(on) static drain-to-source on-resistance CCC 1.75 2.2 v gs(th) gate threshold voltage 3.0 CCC 5.0 v i dss drain-to-source leakage current CCC CCC 25 a CCC CCC 2.0 ma i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 7.6 CCC CCC s q g total gate charge CCC CCC 20 q gs gate-to-source charge CCC CCC 7.3 nc q gd gate-to-drain ("miller") charge CCC CCC 7.1 t d(on) turn-on delay time CCC 14 CCC t r rise time CCC22CCCns t d ( off ) turn-off delay time CCC 24 CCC t f fall time CCC17CCC c iss input capacitance CCC 810 CCC c oss output capacitance CCC 47 CCC c rss reverse transfer capacitance CCC 7.3 CCC c oss output capacitance CCC 610 CCC pf v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance CCC 16 CCC v gs = 0v, v ds = 400v, ? = 1.0mh z c oss eff. effective output capacitance CCC 5.9 CCC c oss eff. (er) effective output capacitance CCC 37 CCC (energy related) avalanche characteristics symbol parameter typ. units e as single pulse avalanche energy CCC mj i ar avalanche current  CCC a e ar repetitive avalanche energy  CCC mj thermal resistance symbol parameter typ. units r jc junction-to-case  CCC r cs case-to-sink, flat, greased surface 0.5 c/w r ja junction-to-ambient  CCC v ds = v gs , i d = 250 a v ds = 500v, v gs = 0v v ds = 400v, v gs = 0v, t j = 125c conditions v gs = 0v, i d = 250 a reference to 25c, i d = 250 a v gs = 10v, i d = 2.2a  v gs = 20v conditions v ds = 50v, i d = 2.2a v gs = -20v i d = 3.6a v ds = 400v v gs = 10v, see fig.14a &14b  v dd = 250v i d = 3.6a r g = 17 v gs = 10v, see fig. 15a & 15b  v gs = 0v v ds = 25v ? = 1.0mhz, see fig. 5 1.8 7.8 max. 150 v gs = 0v,v ds = 0v to 400v  62 max. 1.6 CCC downloaded from: http:///

 www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 6.2v 5.9v 5.8v 5.6v 5.5v bottom 5.3v 60 s pulse width tj = 25c 5.3v 4 5 6 7 8 v gs , gate-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 150c v ds = 50v 60 s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 3.6a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 6.2v 5.9v 5.8v 5.6v 5.5v bottom 5.3v 60 s pulse width tj = 150c 5.3v downloaded from: http:///

 4 www.irf.com fig 5. typical capacitance vs. drain-to-source voltage fig 6. typ. breadown voltage vs. temperature 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0.2 0.4 0.6 0.8 1.0 v sd , source-to-drain voltage (v) 0.1 1 10 100 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 150c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , temperature ( c ) 500 550 600 650 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 250ua 0 4 8 12 16 q g total gate charge (nc) 0 4 8 12 16 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 400v v ds = 250v v ds = 100v i d = 3.6a downloaded from: http:///

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature 25 50 75 100 125 150 t c , casetemperature (c) 0 1 2 3 4 i d , d r a i n c u r r e n t ( a ) 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 01234567 i d , drain current (a) 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( ) v gs = 10v v gs = 20v fig 9. typical rdson vs. drain current downloaded from: http:///

 6 www.irf.com fig 13. maximum avalanche energy vs. drain current fig 12. maximum safe operating area 25 50 75 100 125 150 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 0.4a 0.7a bottom 1.8a fig 14a. gate charge test circuit fig 14b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr 1k vcc dut 0 l s fig 13b. unclamped inductive waveforms fig 13a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v 1 10 100 1000 v ds , drain-tosource voltage (v) 0.01 0.1 1 10 100 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 150c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc downloaded from: http:///

 www.irf.com 7 fig 16. 
  

  for n-channel hexfet   power mosfets  
     ? 
     ?     ?

         p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
  + - + + + - - -        ?      !  ?   " #$## ?        %  && ? #$##'$ 
 fig 15a. switching time test circuit fig 15b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f   ( ) 1 *  %   0.1        ! " + -     downloaded from: http:///

 8 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 06/11 
     
     

 

 
  note: for the most current drawing please refer to ir website at http://www .irf.com/package/ to-220ab packages are not recommended for surface mount application. int ernat ional part number rectifier lot code assembly logo ye ar 0 = 2000 dat e code week 19 line c lot code 1789 example: this is an irf1010 note: "p" in as sembly line position i ndi cates " l ead - f r ee" in the assembly line "c" as s e mb le d on ww 19, 2000 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFB812

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X